Nanobubbles: the big picture

نویسندگان

  • Phil Attard
  • Michael P. Moody
  • James W.G. Tyrrell
  • Ian Wark
چکیده

Nanobubbles, whose existence on hydrophobic surfaces immersed in water has previously been inferred from measurements of long-ranged attractions between such surfaces, are directly imaged by tapping mode atomic force microscopy. It is found that the nanobubbles cover the surfaces in an irregular, interconnected or close-packed network whose morphology is dependent on pH and whose lifetimes are at least of the order of hours. Their height is of the order of 30 nm and their radius of curvature is of the order of 100–300 nm. It appears that the nanobubbles form from a solution supersaturated with air. A thermodynamic and statistical mechanical analysis of the homogeneous nucleation of liquid droplets from a supersaturated vapour shows that although a single droplet can be in equilibrium with a 4nite volume of gas, for a gas reservoir the equilibrium state is represented by a single macroscopic droplet, which grows by collisions and by Ostwald ripening. It is concluded that the electric double-layer repulsion between neighbouring nanobubbles on the hydrophobic surface plays a role in their stabilisation. c © 2002 Elsevier Science B.V. All rights reserved. PACS: 61.16.Ch; 68.10.Cr; 82.65.Dp

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics.

Nanobubbles can be observed with optical microscopy using the total-internal-reflection-fluorescence excitation. We report on total-internal-reflection-fluorescence visualization using rhodamine 6G at 5 μM concentration which results in strongly contrasting pictures. The preferential absorption and the high spatial resolution allow us to detect nanobubbles with diameters of 230 nm and above. We...

متن کامل

TIRF Microscopy for the Study of Nanobubble Dynamics

Nanobubbles can be observed with optical microscopy using the total internal re ection uorescence (TIRF) excitation. We report on TIRF visualization using Rhodamine 6G at 5μM concentration which results to strongly contrasted pictures. The preferential absorption and the high spatial resolution allow to detect nanobubbles with diameters of 230 nm and above. We resolve the nucleation dynamics du...

متن کامل

Observation of number-density-dependent growth of plasmonic nanobubbles

Interaction dynamics of laser pulses and nanoparticles are of great interest in recent years. In many cases, laser-nanoparticle interactions result in the formation of plasmonic nanobubbles, and the dynamics of nanoparticles and nanobubbles are inseparable. So far, very little attention has been paid to the number density. Here we report the first observation of number-density-dependent growth ...

متن کامل

Diagnosis of prostate cancer using anti-PSMA aptamer A10-3.2-oriented lipid nanobubbles

In this study, the lipid targeted nanobubble carrying the A10-3.2 aptamer against prostate specific membrane antigen was fabricated, and its effect in the ultrasound imaging of prostate cancer was investigated. Materials including 2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphatidic acid, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, 1,2-dipalmitoyl-sn-glycer...

متن کامل

Modeling and Optimization of Nano-bubble Generation Process Using Response Surface Methodology

In this paper, size distribution of nano-bubbles was measured by the reliable and fast method of laser diffraction technique. Nano-bubbles were produced using a nano-bubble generator designed and made based on hydrodynamic cavitation phenomenon in Venturi tubes. A Central Composite Design with Response Surface Methodology was used to conduct a five factor, five level factorial experimental desi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002